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Intransitive Lie groups of transformations have invariant varieties which in 
suitable cases can be considered as space-times of a universe. The physical laws 
in the latter are expressed in terms of group theoretical notions. Theorems on 
the coincidences of group trajectories and geodesics are derived. The groups of 
linear transformations of the space of basis vectors are used as gauge groups to 
break the symmetry of the group of transformations and of their natural metric. 
It is shown that in case of the de Sitter group and its adjoint group as gauge 
group, one obtains in this way general relativistic theories of gravitation, 
especially Einstein's theory. More general aspects of the formalism are dis- 
cussed. 

I. I N T R O D U C T I O N  A N D  S U M M A R Y  

The  first f o rmu la t i on  of Eins te in ' s  genera l  theory  of re la t iv i ty  as a 
gauge  theory  of the Loren tz  g roup  has  been  sugges ted  b y  U t i y a m a  soon  
af ter  Y a n g  and  Mil ls  (1954) p re sen ted  their  genera l i za t ion  of  W e y r s  gauge  
me thod .  In tegra l  fo rmula t ions  of  a gauge  theory  of g rav i ta t ion  were  given 
b y  L u b k i n  (1963) a n d  la ter  b y  Y a n g  (1974) with the  genera l  l inear  group,  
ac t ing  on  the space  of t angen t  vectors ,  as gauge  group.  T h e  au tho r  la te r  
sugges ted  the l inear  g roup  ac t ing  on the spinors  for  a (quasi)  un i f ied  gauge  
theory  of g rav i ta t ion  a n d  e l ec t romagne t i sm (Ha lpern ,  1977b, 1979d). 

D i r ac ' s  m e t h o d  to genera l ize  ma t t e r  f ield equat ions  to i nva r i ance  
groups  o ther  than  the Loren tz  group,  especia l ly  the  de Sit ter  g roup  a n d  the 
c o n f o r m a l  group (Dirac ,  1935), insp i red  the au tho r  to c rea te  a de  Si t ter  
covarian.t  f o rmula t ion  of  genera l  re la t iv i ty  (Halpern ,  1977a). P re l imina ry  
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considerations along this line were already made by Lubkin (197I) without 
the author's knowledge. The author started out from a de Sitter-covariant 
version of Pauli's (1921) formulation of the principle of equivalence and 
generalized Dirac's construction to curved space (1977a). There are no 
doubt as many different formulations of this modified principle of equiva- 
lence possible as of the original one, but they are also largely equivalent. 

An important motive for such group-covariant constructions, besides 
its obvious use in attempts of constructing unified field theories and its 
general interest in connection with the asymptotic properties of space-time 
(Lubkin, 1971) was, to create techniques that would allow to formulate a 
field theory based on Dirac's large-number hypothesis (Halpern, 1978b). 
The latter requires a theory that is largely in agreement with Einstein's 
theory locally but not globally. 

The author gave then a general formulation of group-covariant field 
equations in which only notions pertaining to the group of transformation 
occur (Halpern, 1978a, b; 1979a-c); even the metric of homogeneous 
space-time is expressed in terms of quantities belonging to group theory 
and so is the universe itself. A short account of this formulation is given in 
Section 2. It forms the basis for the gauge method of the author which is 
again a gauge theory of the group of transformation whereby the symme- 
try of the group action on the space in broken (Halpern, 1978a, b; 
1979a-c). This development is presented in Section 4. In Section 3 and 
Appendix A some necessary mathematical preliminaries are developed. We 
would like to stress that the breaking of the symmetry occurs in this theory 
only for the group of transformations--not for the abstract group and its 
group space which retain their symmetry for local action on the representa- 
tion space. 

The largest gauge group is the general linear group with the dimension 
of the invariance group. 

The most desirable gauge group for physics is, however, not the widest 
but the narrowest which yields all physical results. The author has sug- 
gested the adjoint group of the group of transformations (Halpern, 1978a; 
1979a, b). This case is treated in Section 5, and it is shown in Section 6 that 
for the case of the de Sitter group (and related groups) the equations can 
be solved in a special gauge and the resulting theory is either the general 
theory of relativity with a de Sitter background, or a related nonlinear 
theou(. 

Before its solution, the theory assumes the special form of a tetrad 
theory with a gauge potential. Such a gauge potential of tetrad fields has 
been considered earlier by the author in connection with problems in 
Moilers tetrad formulation of gravitational theory and the Lorentz group 
(Moiler, 1969; Halpern and Miketina~, 1970). There is else no relation 
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between the two cases. The method presented here gives, however, not 
only a new approach to general relativity and its nonlinear generalization. 
The group of transformations considered need not act on  space-t ime 
alone; it can be a much wider group. The method of symmetry breaking 
provides a wider- - i f  not a new--out look  of how gravitational fields are 
related to symmetry breaking and relative dislocations of the axes at 
different points of the higher-dimensional representation space. A wider 
outlook is also obtained for the unification of gravitation with electromag- 
netism and other fields and for the law of motion in its relation to 
trajectories of group generators; but hitherto these possibilities have not 
yet led to any significant improvements. They have therefore been limited 
here to brief remarks. The work on the present approach has only begun 
and a host of new possibilities have still to be investigated. 

The notation follows closely that of Eisenhart (1933) with the excep- 
tion that Latin letters are used for the space of basis vectors of the group. 

2. MINIMAL INVARIANT VARIETIES AS M O D E L S  OF T H E  
S P A C E - T I M E  OF T H E  UNIVERSE 

Consider a continuous group of transformations G, with r essential 
parameters, acting on a n-dimensional space V n. The rank of the matrix of 
base vectors: ( ~ )  ( i -  1 . . . n ,A  = 1. . . r )  of G r be q < r < n  so that the group is 
intransitive and there exist q-dimensional invariant varieties. 

One can in general construct a metric of V n such that G, is a group of 
motion and each of the family of invariant varieties is a q-dimensional 
Riemannian subspace Vq imbedded in V n. The  case q = 4 and signature + 2 
makes such a V 4 of suitable extensions a candidate for a model of 
space-t ime of a universe. One can then introduce a coordinate system in 
1I, such that everywhere 

~----0, Ox--- ~ =0 ,  gram = +- 1, gin* = 0  ( i  ~ m )  

( S = t . . . r , m - - q + l  . . . . .  n , i - - 1 . . . n , R = l . . . r )  (2.1) 

because the generators X R = ~ O / a x  t of Gr act only within each invariant 
variety and because Killing's equations 

Og, k ~ , _  O~s t O,~ = 0  (2.2) 
8x--]~ ~ ~- g,k Ox--- 7 + git Ox--- s 

are satisfied. We shall consider here only semisimple groups for which a 
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nonsingular matrix 

~'Rs = cUvc~'v (2.3) 

can be formed out of the structure constants CSr. 
The author (Halpern, 1978a, b; 1979a-c) has expressed the con- 

travariant metric tensor as 

with 

gik = C l~]~ 7~S lis k (2.4) 

RSys r = 8r s (2.3a) 

in the coordinates satisfying equations (2.1). C depends only on x m(m >q) 
and the ~s only on x i(i < q). For a given minimal invariant variety V 4, C is 
thus constant. The proof that (2.4) satisfies Killing's equations is furnished 
in Appendix A. 

The metric of V 4 is thus expressed in terms of generators and structure 
constants of Gr. Field equations can now be constructed that consist only 
of group covariant expressions. Lie derivatives should replace all other 
derivatives. 

The Lagrangian density of a scalar field becomes 

1/2 RS~i [ 0 ,~k  [ 0 (2.5) 

A Lie derivative of spinors on the V 4 of a Gr has also been con- 
structed. We shall not discuss it here. 2 

Having achieved that task for the field equations, we would like to 
express the equation of motion of a classical body as well in a Gr-covariant 
way. The timelike geodesics of V 4, however, do not in general coincide 
with group trajectories. Agreement with the well-established results of 
general relativity can only be achieved if trajectories exist that approximate 
these geodesics well enough. We consider in the following only the case 
where every geodesic of V 4 is a group trajectory. This situation is further 
explored in the next section. 

2Se,r Halpern (1978a, b, c; 1979a-c). A Lie derivative of spinors which is apparently related to 
the authors has also been suggested by W. Unruh (private communication). 
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3. GEODESICS AND GROUP TRAJECTORIES 

The basis vectors ~a of G r are determined only up to a nonsingular 
r-dimensional linear transformation C. The theory of Lie groups of trans- 
formations is formulated covariantly with respect to such linear transfor- 
mations. The transformation C can be chosen so that at a given ordinary 
point P0 of V4, q =4  of the basis vectors, let us say in (B = 1 .. . . .  4), are 
orthonormal and the remaining ~M ( M = q + l  .. . . .  r) vanish there. We 
denote such a system of basis vectors as "special" at Po- A special system is 
of course not uniquely determined; apart from rotations, vectors ~m 
(M >q) can arbitrarily be added to the ~B- 

Theorem. The group trajectory of a base vector ~ is a geodesic 
through a point P0, if a special system of base vectors exist there 
such that 

(3.1) 

Proof (1) The condition of equation (3.1) is satisfied at every point of 
the trajectory if it is satisfied at P0, because none of its points is preferred. 
Indeed at any point P~ of the trajectory the linear transformation of the 
base vectors by the adjoint group of G, with the group element which 
brings Pi into Po along the trajectory produces such a system at Pv We 
shall show this for an infinitesimal displacement along the trajectory. We 
can always choose ~ itself as one of the vectors (let us say ~ = 8[) of the 
special system pointing in the 1-direction. At a neighboring point Pl of the 
path, 

x '=  xg + 8~&" (3.2) 

the components of all vectors differ by 

8 ~ =  ~/0~81" (R=I  .r) 
O X  1 " �9 

the transformation of the adjoint group alters them by 

(3.2a) 

0 .2b)  



850 I-Iai~a-n 

clearly a coordinate transformation with 

(3.2c) Ox k Ox k 

restores then all the values of the transformed components to their values 
at P0. The transformation of the adjoint group leaves the structure con- 
stants unchanged because of Jacobi's identities so that even the metric 
(2.4) is the same as at P0 after the transformations and (3.1) is satisfied at 
Pl. 

(2) To prove that the trajectory is a geodesic if and only if equation 
(3.1) is fulfilled at every one of its points we remember that every ~ in V 4 is 
the symbol of the group of motion and contract Killing's equation (2.2) 
with ~i and ~k to obtain 

~ i ~ k ~ +  2g, ,a~X / (~,)~i  = 0 (2.2a) 

with the help of (3.1) we obtain from this 

a~--d(l~igik~k)~;=O implying a--~(~igikl~k)=O (j--- 1. . .4) (3.3) 

One can thus choose the parameter such that 

Ox m 

and 

Because of (3.3): 

1 kj [ % Ogim ) Fkimxi.~ m= "~g [2 Ox j 
Ox m 

O~ ~i~ m 2gim~iO~xmy 

(3.3a) 

(3.3b) 

and because of (2.2): 

Ogij ~i~k__ [J'i o~k o~k ~i~ (2.2b) 



Broken Symmetry 851 

together (3.3a), (3.3b), and (2.2b) show that the equation of the geodesic is 
satisfied: 

gjk( xk'i- Fkim.~i.~m)=o (3.4) 

We obtain immediately the following corollary. 
Every geodesic through Po is a group trajectory if and only if a special 

system of base vectors exist so that (3.1) is fulfilled for any two vectors 
~=~A,~s (A,B = 1...4). Each vector of the subspace spanned by 41"'" 44 
has a geodesic as trajectory. We consider here only groups that fulfill this 
condition. Is the possibility of motion of macroscopic bodies along non- 
geodesic timelike group trajectories in conflict with experience? The author 
has repeatedly pointed out that this need not necessarily be so (Halpern, 
1978b; 1979b, c). 

Consider a special system of base vectors at P0 in coordinates that 
result in a Minkowski metric there. The geodesic motion of a macroscopic 
body can be the trajectory of a vector CR~R with C R = 0  for 
R >4,TRscRc S= 1. One may attribute to that motion a volume in phase 
space proportional to 

3 (C~)2 
~,, (3.5) 

a~l YRsCRC s 

Consider now the same relations in case of a nongeodesic trajectory of the 
same initial velocity, where C R v~0 also for R > 4. The phase space volume 
according to equation (3.5) will shrink relative to the geodesic case, in the 
limit the more the smaller the ratio of the radii of curvature of the 
trajectory and the universe (geodesic motion) is. We can only observe a 
radius of curvature far smaller than that of the universe, which would 
correspond to such a small relative volume in phase space that we have 
practically no chance to encounter it among a limited number of samples 
--just as we do not encounter a macroscopic quantity of gas in vacuum, 
that will contract. The example given here is a possible generalized law of 
motion which is in the spirit of the group theoretical approach; it can be 
studied best in case of the de Sitter group treated in later sections. The 
equations of the generalized free motion are nonlinear and of higher order. 
They are briefly stated for the de Sitter group. 

4. BREAKING OF THE GROUP SYMMETRY BY THE 
GAUGE FORMALISM 

We have been able to express the metric of space-time in terms of 
quantities belonging to the group of transformations itself; it is therefore 
suggestive to describe the breaking of the symmetry of space due to local 
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inhomogenous matter distributions in terms of a symmetry breaking of the 
group of transformation which acts on space. (Not of the abstract group 
which is to remain intact to allow action on localized quantities. Even the 
group of transformation should still function locally on path segments). 

The author has suggested using the covariance of the group theory 
with respect to linear transformations of the space of base vectors (see the 
first part of Section 3) to establish a formalism of the gauge type, which 
can describe the symmetry breaking of space and (in a still rather artificial 
way) relate it to the presence of matter (Halpern, 1978a, b; 1979a-c). 

We start by performing at every point of V 4 independent linear 
transformations of the space of base vectors. The transformations affect 
thus all indices with capital Latin letters. We are able to uphold our 
formalism in spite of this manoeuver if we only replace derivatives of 
quantities with block indices by invariant derivatives. Suppose ~, trans= 
forms: 

(4.1) 

by some subgroup F of GL(r) with canonical parameters u~. 3 The in- 
variant derivative is defined in a well-known way (DeWitt, 1963) with a 
potential A~(x) and the generators G~ of F: 

A a v ~u4,= --~x~ ~V + ~ ( G,~)v~ v (4.1a) 

A transformation S of F transforms the potentials inhomogenously with 
respect to the adjoint group of F. Infinitesimally 

8A;(x)  = 8u,(x)  
p ~x k 

(4.1b) 

so that ~u.k transforms in the same way as iv: 

__+ v (4.1c) ~u.~ S v S v .  

The condition that the potential can be transformed to zero at all points x 
simultaneously by a transformation SV(x) is 

A : ~xi k OxU , +CB'/Ai~Ak 0 ( 4 . 1 d )  

3To distinguish r from (7, we use Greek indices instead of Capital Latin indices 
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A transformation Sff[u•(x)] in our unperturbed V 4 of G r produces poten- 
tials which satisfy equation (4.1d). The commutation relations are now of 
the form: 

m i r162 ~ I",pT i 
~ ~U.m --"aU "~R.m - ""RU ~T (4.2) 

where ~,~.k are defined in equations (4.1), (4.1a), and (4.1c) and 

depends on x but 

(4.2a) 

tT  C;w. k =-0 (4.2b) 

Killing's exluations assume the form 

(4.2c) ~ ~ + g r ~ . i  + gim~.k----O 

To break the symmetry of V 4 we abandon equations (4.1) and (4.1d) 
keeping, however, equations (4.1a)-(4.1c), (4.2), (4.2a)-(4.2c) for a poten- 
tial which has now to be determined from field equations. Also the ~n and 
the Sff(x) have to be obtained from field equations and from equations 
(4.2) and (4.2a). The generalized Killing equations (4.2c) imply furthermore 
that the metric is of the same form as equation (2.4) yet formed with the 
y,ns out of the primed structure "constants." 

To obtain consistent field equations we have to form invariants out of 
the Ak ~, the ~ ,  and the Sff and add equations (4.2) with a Lagrangian 
multiplier, so that we can vary independently with respect to all the 
unknowns. We may in simpler cases solve equations (4.2), eliminate 
thereby some of the unknowns, and avoid the multipliers. The metric can 
always be constructed from the solutions. 

The following two sections will provide examples for the procedures. 

5. THE ADJOINT GROUP AS GAUGE GROUP 

Every group G r has a "natural" group of linear transformations acting 
on the space of its base vectors: The adjoint group of G r has the same 
structure constants as G r and thus an isomorphic law of composition of the 
group parameters (Eisenhart, 1933). We have seen moreover in Section 3 
that the structure constants of G r are not altered by the transformations of 
its adjoint group. The S[,(x) which were only auxiliary variables, serving to 
exhibit the full invariance properties of the theory, are constants here. 
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The adjoint group is not transitive; this leads us to an additional 
restriction: We want  to avoid solutions for the ~ which the gauge 
group even for one single point fails to t ransform to a set of base vectors 
of the unperturbed V 4. This means we must be able to transform the base 
vectors at every point into a special system (see Section 3) in which for 
A = 1 . . . . .  q = 4 they form a Vierbein whereas those with M > 4 vanish. This 
is because as we saw in Section 3, we can also always introduce a special 
system at one given point by a constant linear transformation and then 
transform this property to any other point of V 4 by a transformation of the 
adjoint group. The constant linear t ransformation fixes the components  of 
the structure constants. 

Thanks to our requirement we can introduce even in the general case 
a gauge for which at every point the first four base vectors form a 
Vierbein: 

~ ---- hi (A ,B  = 1 . . .4 ) ,  gikg;~=~An 

~ t - - 0  ( m > 4 )  ( 5 . 1 )  

Written explicitly equations (4.2) in such a gauge are 

= 

(A,B,D,E,= 1.. .4,  M - - 5 . . . r )  

(5.2a) 

(5.2b) 

The Greek indices in equation (4.1) are replaced for the adjoint group by 
Latin indices because structure constants are the same as for G,. 

The equations in this form are much simplified. They will be solved 
for the de Sitter group in the next section. 

6. T H E  de s r I T E R  G R O U P S  AS AN E X A M P L E  

The de Sitter and anti-de Sitter groups are five-dimensional orthogo- 
nal groups with signatures + 3 and + 1, respectively. The basis vectors are 
most  simply expressed in five-dimensional Cartesian form, labeled by 
double indices which we denote here by two Greek letters: 

i D m i ~[a,~]-- X (71,,~8~ -- ~/,,,,, 8~) (i,m,a, fl=l...5) (6.2) 
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If we use the labels only as symbols or in summation we shall write, 
however, Latin letters as before. The structure constants are 

C(::~]ltvSl-~�89189 (6.2a) 

The geodesic condition equation (3.1) is fulfilled here. 

Vt,,,tq[~,~] ffi 4(~/~/~ - 7/~8,/t~ ) (6.2b) 

double index summations are performed over each of the two letters. 
The minimal invariant varieties are generalized spheres: 

1~ikXiX kffi 4" R 2 ( i , k =  1 . . . n  •5) (6.2c) 

(upper sign de Sitter, lower, anti-de Sitter space), on which one can use 
conformal coordinates by introducing 

2 X  k 
x k ffi ~ x 5 = R (kffi 1. . .4) (6.20) 

R + X  5 ' 

and choosing R ffi R o ffi const. The  metric on the invariant variety is then 

g i k = n i k  (1 "+" 02/4) 2 
R 2 ' 02ffiTllmXlX m 

and the base vectors are 

u k i i 

and 

(a,  fl-- 1... 4) (6.20 

(6.2g) 

We consider now the generalization discussed in Section 5 with the adjoint 
group as gauge group. Transforming at every point to a special system we 
give the four nonvanishing base vectors the indices [a,5] whereas all 
~t~.tq--0 (a, fl-- 1. . .4) (Remember the structure constants do not alter their 
form and values (6.2a) by the transformation, but  the base vectors every- 
where assume the components as at x i - -0  of equations (6.2f), (6.2g) 
expressed in general coordinates. We are able to solve equations (5.2a), 

( i , k , l ,  mff i  1.. .4) (6.2e) 

, 
_+ 1_+ + 
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( 5 . 2b )  for the potentials and find 

with 

Hldllern 

A [~ --. - h A m ~  A~ (A,0~ = 1.. .4) 

A[~,,B] = A[a~]h k . . . .  A~BI3 E k E ~ IABE'I  'l 

( 6 . 3a )  

(6.3b) 

i .  k )'ABe = hl,  khsihE (6.4) 

the coefficients of rotation (Eisenhart, 1964). All the 40 components of the 
potential are thus expressed in terms of the tetrads and their derivatives. 
We express now also the fields F~[ ~''l of equation (4.1d) by the tetrads: 

F/~,~. Sl = 0 (6.3c) 

Lagrangian: 

FiR,~, 17Sik - -  l ?  l~Pq ki a- ~ R 4 2 4  
k IRS"t  - -  "~'pqkia" - -  R ~  

which is a well-known quadratic Lagrangian with an admixture of an 
Einstein term (Halpern, 1977a, b) (necessary to avoid singularities in the 
solutions) and a cosmological constant. 

(6.5) 

and 

~,~,47/~B[ ~ E ~ E EF ! XJ 
= )+n 

a,B] I X 
+ Cf~,5 J [x,51hi hk 

= ( R p q k i - R p q k i ) h a P h  Bq (6.3d) 

(all Latin and Greek indices (1. . .4)  with P~qki the Riemann tensor of the 
metric related to the tetrads and 

o 1 
gpqk i  = ~ ( gpkgqi  - gp igqk)  (6.3e) 

In case of the unperturbed space V 4 Rpqki = l~qki and all F/k vanish. 
We consider the following invariants formed out of F,. k for a 
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Besides the Lagrangian of equation (6.5), which is of the Maxwell 
type, as it occurs in all gauge theories, there exists here another Lagrangian 
linear in the fields F,-k M 

FI"'BIC~ ~'SJ h ~'i~ (6.5a) ik [~,SlIa, Bl '~e 

which is equivalent to the Einstein Lagrangian with a cosmologic member. 
One obtains thus essentially Einstein's theory if one adds the conventional 
matter Lagrangians, e.g., equation (2.5) with a constant and varies the total 
Lagrangian with respect to the tetrad fields h~(x) and the matter fields. 

The law of motion in this theoretical framework has, no doubt, a 
deeper basis than just the choice of a Lagrangian. We have given the 
condition for which in unperturbed space every geodesic is a group 
trajectory; the condition (3.1) is obviously fulfilled for the de Sitter group. 
The author has shown (Halpern, 1977a) that a principle of equivalence 
exists even for the de Sitter background, which means in analogy to Pauli's 
(1921) definition: Along the points of a geodesic an arbitrary metric can 
always be transformed into the metric of de Sitter space such that all its 
first derivatives vanish there. 

This theorem contemplated from the point of view of the present 
paper leads to the following features: 

(1) The potentials A,. R can be transformed away on all points of a 
given line segment because the system of ordinary differential equations 
for the parameters of the adjoint group that achieves this has in general 
solutions. 

(2) Killing's equations and the commutation relations of the ~A(x) are  

then formally fulfilled along the points of the line and our considerations 
of Section 3 apply. A geodesic in the general case is then always a 
trajectory of a linear superposition of the transformed ~(x) .  

The system of differential equations that has as solutions all trajecto- 
ries of the group is very complicated even in the unperturbed V 4. It is 
nonlinear of the fifth order in the de Sitter case. One obtains them by 
writing down the path of a general generator: 

2~ i __ ~ i - - C  R ~ i  e X~  (6.6) 
~(x) = ~R\ ] 

Assume a special system of generators at an initial point P0- 

Theorem. A special system of generators can be introduced at any 
other point p of the trajectory such that the generator of the 
trajectory expressed in the transformed system is of the same form 
(6.6) as at P0- 
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The proof follows the considerations and the theorem of Section 3: 
For an infinitesimal displacement along the trajectory the parameters of 
the adjoint group which achieve the transformation, ~o R are proportional 
to the C R and thus 

,5C s = CffrCSSo r =  0 (6.7) 

One can thus express the C a at every point in terms of :~, g, and higher 
derivatives up to the fifth from the equations of the trajectory: 

~';k li k= C~Rh~ CACR (6.8) 

(A,B,D= 1...4; R,S= 1...r) 

i k m ~  ( ' ,D  I'~B I'~AK'~Rt.-,S 
- -  (6.8a) 

and its higher covariant derivatives in the ~ direction, the right-hand side 
of which consists of a chain of structure constants of the same form with 
one more member for each derivative. More details of these equations and 
their possible relation to physics are postponed to a subsequent work. The 
equations of motion of higher order pertain no doubt--if  they really play a 
role in physics--to the nonlinear Lagrangian (6.5). 

We finally mention a generalization of the above theory in which the 
gauge group consists of the direct product of the adjoint group and the 
group of scale transformations. The solution of the generalized commuta- 
tion relations for the potentials Aft in terms of the tetrad fields and a 
simple vector gauge field can even be performed in such a case but the 
analogous results are not gauge covariant. We give here no details because 
in our opinion this approach will not result in a truly unified theory of 
gravitation and electromagnetism. Wider gauge groups either result in 
additional constraints between the potentials or they introduce torsion. 
The methods introduced here can be applied to a multitude of situations, 
the physical content of which should be investigated. 
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APPENDIX A 

Theorem. The Lie derivative of ~yns~s~ with respect to any basis 
vector iv  of Gr vanishes. (See Section 2.) [The result is well known 
for r= n = q  in group space (Eisenhart, 1933).] 

eroof. The Lie derivative is (C~ .CR+ C p . ~ s P ) ~ g  and the expres- 
sion in parenthesis equals "/eQ, uYen'/Qs with 

~ ,= c ~ , ~  + c~,~,  = cr c : , c ~  + c~,c#) 

because of Jacobi's identifies this equals 

~,Q.,= cr c :~c~ + c ~ c ~ ) -  c~,( c;~c~ + c~c~)=0  

because exchange of dummy indices results in terms that cancel. 
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